
Screen Mirroring Video Trace Datasets from User-Generated Data: 

A Quick Reference Guide 

 
Last Update: 27 November 2016 

 

Marios Kastrinakisa, Ghada Badawyb, Mohammed N. Smadic and Polychronis Koutsakisd 

aSchool of ECE, Technical University of Crete, Greece 
bComputing Infrastructure Research Center, McMaster University, Canada 

cECE Department, McMaster University, Canada 
dSchool of Engineering and Information Technology, Murdoch University, Australia 

Email: makastrinakis@electronics.tuc.gr, gbadawy@gmail.com,smadim2@mcmaster.ca, p.koutsakis@murdoch.edu.au 

 

 

1. Introduction 
For the purposes of our study entitled as “Video Frame Size Modeling for User-Generated Traffic in an Enterprise-

Like Environment”, we worked with two different datasets, encoded with the H.264 video coding standard. Those 

datasets are based on real user-generated screen mirroring traffic data from a large shared cube space resembling an 

enterprise environment. Each participant in the data collection ran trace collection scripts on his/her PC, for about a 

month. One script polled the operating system every 33.3 msec to record the name of the main application that the 

participant was working on. Another script recorded the participant’s screen at 30 fps using encoding parameters that 

resembled a Miracast hardware encoder as much as possible (more details on this in section 3). The actual video was 

not recorded, but only the statistics of the encoded video were collected (i.e., I and P frame sizes). The scripts started 

automatically each work day at 8am and stopped at 7pm. When a participant locked his/her screen the scripts would 

report that the user is idle for that duration and video traces collection would stop till the user unlocks his/her machine. 

All of the users were using Windows 7 machines. 

 

2. Recording Method 
A recording framework was deployed on every host machine. It was running and logging in the background during 

the recording period. The FFmpeg program was used for video traffic recording. It logged the compressed H.264 

video information (i.e., frames sizes, GOP structure, frames’ time of arrival etc.) of the host’s machine desktop. The 

frame resolution was the same as the PC’s screen resolution (i.e., it is not a constant) and the frame rate was 30 fps. 

It is worth mentioning that even though FFmpeg was running constantly, it was capable to log video traffic 

information only if the host’s machine GPU was active (i.e., the host machine was not in hibernation, sleep or monitor 

energy saving mode). As for active applications usage recording, a Windows PowerShell script was used for logging 

the name of the application in the foreground, followed by the current timestamp. Windows PowerShell was 

programmed to log the application’s name every 33.3 msec (in order to keep up with FFmpeg logs, where we had one 

frame every 33.3 msec). We should also note that Windows PowerShell is capable to report the application’s name 

only if the host machine is unlocked and the user is not logged off. 

 

3. Datasets Encoding 
The main difference between the two datasets lies in the different encoding of video traces. The first dataset (Dataset 

1) has been encoded with the High 4:2:2 Profile of the H.264 standard, which is typical for professional applications. 

This profile can generate I, P and B frames. However, in our datasets the –tune zero latency command was used in 

FFmpeg to prohibit the encoder from producing B-Frames, in order to minimize latency. For this dataset, we have a 

GOP structure of 60 frames in length, where every GOP starts with an I-Frame and the rest 59 frames are of type P. 

The second dataset (Dataset 2) has been encoded with different encoding parameters. Those parameters try to 

resemble a Miracast hardware encoder as closely as possible. Since I-Frames size are much larger than P-Frames, 

Miracast encoders do not use I-Frames but use Periodic Intra Refresh instead. This enables each frame (in our case 

each I-Frame) to be capped to the same size by using a column of intra blocks that move across the video trace from 

one side to the other, thereby “refreshing” the image. In effect, instead of a big keyframe (in our case an I-Frame), the 



keyframe is spread over many frames (in our case P-Frames). For this dataset, we do not have a GOP structure. We 

only have P-Frames with an exception of one I-Frame whenever the host computer starts or its user logs on. 

 

4. Datasets Structure 
The datasets are already organized and stored as Matlab files, in order to facilitate their easy and direct usage. Every 

dataset is partitioned into two separate files named as “part1.mat” and “part2.mat”. Those files can be loaded to Matlab 

workspace directly and each one contain the video traces information organized and stored in Matlab tables. As for 

Dataset 1, every distinct file contains a table with dimensions of 7892610x4 and for Dataset 2, a table with dimensions 

of 10107570x4 (for that reason, please ensure that your machine has enough memory available). Every table has four 

columns named as “Top_App”, “Frame_Type”, “Frame_Size” and “GoP_number” and every row corresponds to a 

recorded frame. The first column contains the application’s name that the user had opened on the foreground, the 

second column contains the type of the recorded frame, the third column contains the frame’s size in bytes and the 

fourth column the index number of the GOP that the frame belongs to. In addition, we would like to mention that we 

have sorted the frames according to applications name but we have preserved the time consistency of recording. 

Finally, the two tables from the different files of a dataset must be concatenated, in order to have in place the complete 

dataset. 


